1.体育比赛中常出现2比0或0比0的,所以0可以做比的后项______.

2.有竞赛数学这门学科吗?

体育比赛中的数学教案_体育比赛中的数学知识总结

一、比的意义

1、比:两个数相除又叫做两个数的比。比表示的两个数之间的相除关系。

2、比的结构:在两个数的比中,比号前面的数叫比的前项,比号后面的数叫比的后项。

比的前项除以后项所得的商,叫做比值。比值通常用分数表示,也可以用小数或整数表示。

最简比:比的前项和后项都是整数且只有公因数1,这样的比称为最简整数比。

3、比可以表示两个同类数量之间的倍数关系:比如一个长方形长和宽的比是15:10;

也可以表示两个不同类数量之间的相除关系,得到一个新的量:比如路程÷时间=速度。

4、求比值:

比的前项除以后项所得的商叫做比值,所以用比的前项除以后项即可求得比值。

比值是一个具体的数,通常用分数表示,也可以用小数或整数表示。

比值是否带单位:同类数量的比仅表示数量之间的倍数关系,其比值不带单位;不同类数量的比,其比值是一个新的数量,通常带一个复合单位(如 速度)。5、比与比值的关系:二者在写法上可能相同(都可以用分数表示),但比表示两个数量之间的相除关系;比值则是一个具体的数字。

6、比、除法与分数之间的联系:a:b=a÷b=a/b(b≠0)

比、除法与分数之间的区别:

(1)、意义不同:比表示两个数量之间的相除关系;除法是一种运算;分数是一个数;(2)、表示方法不同:除法是一种运算,只能用算式表示;比和分数都可以用分数的形式表示,但是分数并不一定表示两个数量的比。(3)、结果不同:除法的计算结果是一个商,这个商可以是整数、小数或分数;比只有当要求比值的时候,才需要用除法计算,比值可以用整数、小数或分数表示;而分数就是一个数,不需要计算。

7、为什么比的后项不能为0:在除法中,除数不能为0;在分数中,分母不能为0;而比的后项就相当于除法中的除数、分数中的分母,所以比的后项也不能为0。

8、求比中的未知项:

(1)、在除法中,被除数÷除数=商,这3个数量只要知道其中任意2个量,就能求出另一个量。除数=被除数÷商;被除数=商×除数。(2)、比和除法本质上相通的,也就是说,比的前项、后项以及比值中的任意两个量,就能求出另一个量。前项=后项×比值;后项=前项÷比值;比值=前项÷后项。9、体育比赛中的,与数学的中比有什么区别?

(1)、体育比赛中的比表示的仅仅是比赛双方的得分情况,比如3:2或11:9等等,也就可以是2:0或0:3甚至是0:0,这个得分的比表示的不是两个数的相除关系,而是双方得分的相差关系,比号的前后和后面都可以是0。(2)、而数学中的比表示的是两个数之间的相除关系,其后项是不能等于0的。比可以计算出相除的结果(也就是比值),也可以进行化简,如3:6=1:2。但是比赛得分就不能除法计算,也不能化简。二、比的基本性质与化简比

1、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

根据比与除法、分数之间的关系,可以类比一下比的基本性质、除法中的商不变性质、分数的基本性质。

商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变; 分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变。

2、化简比:利用比的基本性质,把比化简成最简整数比。

最简整数比:比的前项和后项都是整数,且只有公因数1,也就是比的前项和后项互质。

3、化简比的方法总结:

(1)、整数比化简:前项和后项同时除以他们的最大公因数;(2)、分数比化简:前项和后项同时乘以分母的最小公倍数,使其变成整数比,再按整数比的方法化简;(3)、小数比化简:前项和后项的小数点同时向右移动相同的位数,使其变成整数比,再按整数比的方法化简;(4)、小数和分数混合的比:可以先把小数化成分数,使其变成分数比,再按分数比的方法化简;也可以是先把分数化成小数,使其变成小数比,再按小数比的方法化简。

三、利用比的基本性质解题

1、常考题型一:例、把5:12的前项加上5,要使其比值不变,后项应该加上多少?

解析误区提示:比的基本性质是比的前项和后项同时乘或除以相同的数(0除外),比值不变。如果把比的比的前项和后项同时加上或者减去相同的数(0除外),并不能保证比值不变,所以后项不能和前项一样加上5。

正确思路:前项加上5,5+5=10,相当于前项乘以2,要使其比值不变,后项也要乘以2,12×2=24,5:12=10:24。但是题目问的时候后项应该加上多少,所以24-12=12,后项应该加上12。

2、常考题型二:化连比。

例、已知甲数:乙数=3:10,乙数:丙数=4:9,请问甲乙丙三个数的比是多少?

解析甲数:乙数=3:10,乙数:丙数=4:9,可以发现甲乙的比中乙数占10份,而乙丙的比中乙数占4份,同一个数在不同的比中的份数不一样,是因为每一份的量不统一。那么咱们可以抓住乙数这个中间量来统一每份数。

具体方法就是找到中间量的最小公倍数,4 和10的最小公倍数是20,根据比的基本性质,甲数:乙数=3:10=6:20;乙数:丙数=4:9=20:45。

这样一来乙数在两个比中所占的份数都是20份,那么两个比中的每一份的量就是相同的,可以写成连比,甲:乙:丙=6:20:45。

本期思考题:甲数是乙数的3/10,乙数是丙数的4/9,求这三个数的连比。

体育比赛中常出现2比0或0比0的,所以0可以做比的后项______.

第十四届全运会在建、新建和改造场馆共41个,建设总投资初步估算约202亿元,其中9个在建场馆总投资估算约149亿元、16个新建场馆总投资估算约43亿元、16个改造场馆总投资估算约10亿元。

同时陕西鼓励新建场馆吸引社会资本,取PPP建设模式筹集所需资金,目前已有西安奥体中心等12个项目用PPP建设模式,吸纳社会资本投入约125亿元。同时,《实施方案》坚持绿色共享、开放节俭的原则,安排校园场馆20个,以场馆建设提升学校体育设施水平、促进校园场馆向社会开放。

全国运动会一般是中华人民共和国全国运动会,简称“全运会”。全国运动会是中国国内水平最高,规模最大的综合性运动会。全运会的比赛项目除武术外基本与奥运会相同,其原意是为国家的奥运战略锻炼新人、选拔人才。全运会每四年举办一次,一般在奥运会年前后举行。

第十四届全国运动会会徽取象传统礼天玉璧。玉为自然之精华,玉璧为致敬上天礼器。寓意全国人民以最好的精神面貌庆祝第一个百年梦想的实现和第二个百年梦想的到来。

有竞赛数学这门学科吗?

意义不同.

比的意义是:两个数相除,又叫做两个数的比,比的后项不能为零.

体育比赛中常出现2比0或0比0,这里表示两个队比赛进球的情况,2表示进了2个球,0表示没有进球,它不是数学中的比.

故答案为:错误.

随着数学竞赛的发展,已逐渐形成一门特殊的数学学科--竞赛数学。

一、数学竞赛的简史

数学竞赛与体育竞赛相类似,它是青少年的一种智力竞赛,所以苏联人首创了"数学奥林匹克"这个名词。在类似的以基础科学为竞赛内容的智力竞赛中,数学竞赛历史最悠久,参赛国最多,影响也最大。比较正规的数学竞赛是1894年在匈牙利开始的,除因两次世界大战及1956年而停止了7届外,迄今已举行过90多届。苏联的数学竞赛开始于1934年,美国的数学竞赛则是1938年开始的。这两个国家除第二次世界大战期间各停止了3年外,均己举行过50多届,其他有长久数学竞赛历史的国家是罗马尼亚(始于1902年)、保加利亚(始于1949年)和中国(始于1956年)。

1956年,东欧国家和苏联正式确定了国际数学奥林匹克的,并于1959年在罗马尼亚布拉索夫举行了第一届国际数学奥林匹克(InternationaI Mathematics Olympiad,简称1MO)。以后每年举行一次。除1980年因东道国蒙古经济困难停办外,至今共举行过40届。参赛国家也愈来愈多。第一届仅7个国家参加,至1980年已有23个;到1990年,则有54个。

必须说明在上述历史之前已有一些数学竞赛活动,例如苏联人说,在1886年帝俄时代就举行过数学竞赛。又如1926年在中国上海市举办过包括学生、银行和钱庄职员在内的珠算比赛,中华职业学校一年级学生,16岁的华罗庚凭智慧夺得了冠军。这些都是关于数学竞赛的佳话,不列入正史。

二、数学竞赛的发展

数学竞赛活动是由个别城市,向整个国家,再向全世界逐步发展起来的。例如苏联的数学竞赛就是先从列宁格勒和莫斯科开始,至1962年拓展至全国的,美国则是到1957年才有全国性的数学竞赛的。

数学竞赛活动也是由浅入深逐步发展的。几乎每个国家的数学竞赛活动都是先由一些著名数学家出面提倡组织,试题与中学课本中的习题很接近,然后逐渐深入,并有一些数学家花比较多的精力从事选题及竞赛组织工作,这时的试题逐渐脱离中学课本范围,当然仍要求用初等数学语言陈述试题并可以用初等数学方法求解。例如苏联数学竞赛之初,著名数学家柯尔莫哥洛夫、亚历山大洛夫、狄隆涅等都参与过这一工作。在美国,则有著名数学家伯克霍夫父子、波利亚、卡普兰斯基等参与过这项工作。

国际数学奥林匹克开始举办后,参赛各国的备赛工作往往主要是对选手进行一次强化培训,以拓广他们的知识,提高他们的解题能力。这种培训课程是很难的,比中学数学深了很多。这时就需要少数数学家专门从事这项活动。 数学竞赛搞得好的国家,竞赛活动往往取层层竞赛、层层选拔这种金字塔式的方式进行。例如。苏联分五级竞赛,即校级、市级、省级、加盟共和国级和全苏竞赛,每一级的竞赛人数约为前一级的1/10,还设立了8个专门的数学学校(或数学奥林匹克学校),以培养数学素质好的学生。

数学竞赛虽然历史悠久,但最近10年有很展和变化,有关工作愈趋专门,我们要认真注意其发展,认识其规律。

三、数学竞赛的作用

1. 选拔出有数学才能的青少年。由于数学竞赛是在层层竞赛,水平逐步加深的考核基础上选拔出优胜者,优胜者既要有踏实广泛的数学基础,又要有灵活机智的头脑和富于创造性的才能,所以他们往往是既刻苦努力又很聪明的青少年。这些人将来成才的概率是很大的。数学竞赛活动受到愈来愈多国家的注意,在世界上发展得那么快的重要原因之一就在于此。在匈牙利,著名数学家费叶、黎茨、舍贵、寇尼希、哈尔、拉多等部曾是数学竞赛的优胜者。在波兰,著名数论专家辛哲尔是一位数学竞赛优胜者。在美国,数学竞赛优胜者中后来成为菲尔兹数学奖获得者的有米尔诺、曼福德、奎伦三人,也有不少优胜青成为著名的物理学家或工程师,如著名力学家冯?卡门。

2. 激发了青少年学习数学的兴趣。数学在一切自然科学、社会科学和现代化管理等方面都愈来愈显得重要和必不可少。由于电子计算机的发展,各门科学更趋于深入和成熟,由定性研究进入定量研究。因此青少年学好数学对于他们将来学好一切科学,几乎都是必要的。数学竞赛将健康的竞争机制引进青少年的数学学习中,将激发他们的上进心,激发他们的创造性思维。由于数学竞赛是分级地金字培式地进行的,所以国家级竞赛之前的竞赛,试题基本上不跳离中学数学课本范围,适合广大青少年参加.但也要承认人的天赋和数学素质是有差别的,甚至会有很大的差别。国家级竞赛及其以后的竞赛和培训,只能在少数人中拔高进行,少数有很好数学素质的青少年是吃得消的。例如,澳大利亚少年托里?陶在他10岁、11岁和12岁时分别在第27、28和29届国际数学奥林匹克上获得铜牌、银牌和金牌。在数学竞赛的拔高阶段当然需要一些大学老师和数学专业研究人员参与。

3. 推动了数学的教学改革工作。数学竞赛进入高层次后,试题内容往往是高等数学的初等化。这不仅给中学数学添人了新鲜内容,而且有可能在逐步积累的过程中,促使中学数学教学在一个新的基础上进行反思,由量变转入质变。中学教师也可在参与数学竞赛活动的过程中,学得新知识,提高水平,开阔眼界,事实上,己有一些数学教学工作者在这项活动中逐渐尝到了甜头。因此数学竞赛也可能是中学数学课程改革的"催化剂"之一,似乎比自上而下的"灌输式"的办法为好。60年代初,西方所谓中学数学教学现代化运动即是企图用某些现代数学代替陈旧的中学数学内容,但取了由上往下灌输的方法,结果既脱离教师水平,也脱离学生循序学习所需要的直观思维过程。现在基本上被风一吹,宣告失败了。相反地,数学竞赛也许是一条途径。在中国,中学生的高考压力很重,中学教师为此而奔波,确有路子愈走愈窄之感。数学竞赛或许能使中学数学的教学改革走向康庄大道。

四、竞赛数学--奥林匹克数学

随着数学竞赛的发展,已逐渐形成一门特殊的数学学科-竞赛数学,也可称为奥林匹克数学。将高等数学下放到初等数学中去,用初等数学的语言来表述高等数学的问题,并用初等数学方法来解决这些问题,这就是竞赛数学的任务。这里的问题甚至解法的背景往往来源于某些高等数学。数学就其方法而言,大体上可以分成分析与代数,即连续数学与离散数学。由于目前微积分不属于国际数学奥林匹克的范围,所以下放离散数学就是竞赛数学的主体。很多国际数学奥林匹克的试题来自数沦、组合分析、近世代数、组合几何、函数方程等。当然也包含中学课程中的平面几何。

竞赛数学又不同于上述这些数学领域。通常数学往往追求证明一些概括广泛的定理,而竞赛数学恰恰寻求一些特殊的问题,通常数学追求建立一般的理论和方法,而竞赛数学则追求用特殊方法来解决特殊问题;而且一旦某个问题面世,即成为陈题,又需继续创造新的问题。竞赛数学属于"硬"数学范畴,它通常也与纯粹数学一样,以其内在美,包括问题的简练和解法的巧妙,作为衡量其价值的重要标准。

竞赛数学不能脱离现有数学分支而独立发展,否则就成了无源之水,所以它往往由某些领域的专家兼搞,如参加国际数学奥林匹克的中国代表团的出色教练单樽,就是一位数论专家。

国际数学奥林匹克的精神是鼓励用巧妙的初等数学方法来解题,但并不排斥高等数学方法和定理的使用。例如在第31届国际数学奥林匹克中,有学生在解题时用到了贝特朗设,也称车比雪夫定理,即当n大于1时,在n和2n之间必定有一个素数,还有人在解题时用到了谢尔宾斯塞定理,即一个平方数表成s个平方数之和的通解形式。这些定理须在华罗庚所著的《数论导引》(大学数学系研究生教本)或更专门的书中才能找到。这样不仅已是"杀鸡用牛刀",而且按某外国教练的说法,"他们在用炸蚊子,但蚊子被炸死了!"这样做是允许的,但不是国际数学奥林匹克所鼓励的。

国际数学奥林匹克的一个难试题,经简化后的证明要写三四页,这不仅大大超过中学课本的深度,也不低于大学数学系一般课程的深度,当然不包括大学课程的广度。实际上,大学数学系课程中,一条定理的证明长达3页者并不多。一个好试题的解答,大体上相当于一篇有趣的短论文。因此用这些问题来考核青少年的数学素质是相当科学的。它们的解决需要参赛者有相当宽广的数学基础知识,再加上机智和创造性。这与单纯的智力小测验完全不同。国际上的数学竞赛范围,大体上从小学四年级到大学二年级。小学生因基础知识太少,这期间的所谓数学竞赛,其实是智力小测验型。对大学生应强调系统学习,要求对数学有一个整体了解。因此数学竞赛的重点应是中学,特别是高中。

现在已经积累了丰富的数学竞赛题库,可供中学师生和数学爱好者练习。国际上也已经有了竞赛数学的专门杂志。

五、数学竞赛在中国

我国的数学竞赛始于1956年,当时举办了北京、上海、武汉、天津四城市的高中数学竞赛。华罗庚、苏步清、江泽涵等最有威望的数学家都积极出面领导并参与这项工作。但由于"左"的冲击,至1965年,只零零星星地举行过6届,"文化大革命"开始后,数学竞赛更被看成是"封、资、修"的一套而被迫全部取消。直到"四人帮"被打倒,我国的数学竞赛活动于18年又重新开始,并从此走上了迅速发展的康庄大道。1980年前的数学竞赛属于初级阶段,即试题不脱离中学课本。1980年以后,逐渐进入高级阶段。我国于1985年第一次参加国际数学奥林匹克,1986年开始名列前茅,1989和1990年连续两年获得团体总分第一。

我国成功地举办了第31届国际数学奥林匹克,这标志着我国的数学竞赛水平已达到国际领先水平。第一,中国获得团体总分第一,说明我国金字塔式的各级竞赛和选拔体系及奥林匹克数学学校和集中培训系统是完善的,第二,我国数学家对35个国家提供的100多个试题,进行了简化与改进,从中推荐出28个问题供各国领队挑选,结果被选中5题(共需6题),这说明我国竞赛数学的水平是相当高的。第三,各国学生的试卷先由各国领队批改,然后由东道主国家组织协调认可。我们组织了近50位数学家任协调员,评分准确、公平,提前半天完成了协调任务,说明我国的数学有相当的实力。第四,这是首次在亚洲举行国际数学奥林匹克,中国的出色成绩鼓舞了发展中国家,特别是亚洲国家。除此而外,这次竞赛的组织工作也是相当不错的。

在中国,从老一辈数学家,中青年数学家,直至中小学老师,成千上万人的共同努力,才在数学竞赛方面获得了今天的成就。这里特别要提到华罗庚,他除倡导中国的数学竞赛外,还撰写了《从杨辉三角谈起》《从祖冲之的圆周率谈起》《从孙子的"神奇妙算"谈起》《数学归纳法》和《谈谈与蜂房结构有关的数学问题》5本小册子,这些是他的竞赛数学作品。我国在18年重新恢复数学竞赛后,他还亲自主持出试题,并为试题解答撰写评论。中国其他优秀竞赛数学作品有段学复的《对称》闵嗣鹤的《格点和面积》姜伯驹的《一笔画和邮递路线问题》等。这里还应提到王寿仁,他从跟华罗庚一起工作起,一直到今天,始终领导并参与了数学竞赛活动。他带领中国代表队3次出国参加国际数学奥林匹克,并领导了第31届国际数学奥林匹克的工作。1980年以后,我国基本上由中青年数学家接替了老一辈数学家从事的数学竞赛工作,他们积极努力,将中国的数学竞赛水平推向一个新的高度。裘宗沪就是一位突出代表。他从培训学生到组织领导数学竞赛活动,从3次带领中国代表队参加国际数学奥林匹克到举办第31届国际数学奥林匹克,均作出了杰出贡献。

六、关于我国数学竞赛的几个问题

1.要认真总结经验。既要总结成功的经验,也要总结反面的教训。特别是1956年至17年的22年中只小规模地举行了6次数学竞赛,完全停止了16年,比匈牙利因两次世界大战而停止数学竞赛的时间长一倍多,这也从一个侧面反映了"左"的危害。要允许甚至鼓励对数学竞赛发表各种不同看法,以避免大轰大嗡、大起大落及"一刀切"。当有了缺点时,要冷静分析,划清数学竞赛内含的不合理性与工作中的缺点的界线。

2.完善领导体制。可否设想,国家教委和中国科协通过中国数学会数学奥林匹克委员会(或其他形式的一元化领导),统一领导与协调全国各级数学竞赛活动和国际数学奥林匹克的参赛和组织培训工作。成立数学奥林匹克基金会,协助某些数学竞赛活动,奖励数学竞赛优胜者和作出贡献的领导、教练、中小学教师等。

3.向社会作宣传。宣传数学竞赛的意义和功能,以消除误解,例如"数学竞赛是中小学生搞的智力小测验","这是选拔天才,冲击了正常教学","教师,特别是大学教师,搞数学竞赛是不务正业"等。要用事实说明数学竞赛活动的成绩。例如仅仅""前的几次低层次数学竞赛中,已有一些竞赛优胜者成才了。如上海的汪嘉冈、陈志华,北京的唐守文、石赫,他们现在已经是国内的著名中年数学家,有的已获博士导师资格。他们在""中都被耽误了10年,否则完全会有更大成就。

4.处理好普及与提高的关系。数学竞赛需要分学校、市、省、全国、冬令营、集训班金字塔式地进行。前3个层次是普及型的,试题应不脱离中学数学课本范围,面向广大学生和教师。国家级竞赛及以后的活动是提高型的,参赛者的面要迅速缩小。至于冬令营和集训队,全国只能有几十个学生参加。数学奥林匹克学校要注意质量,宜办得少而精。对于参加数学学校的学生要严格挑选,不要妨碍他们德、智、体的全面发展。除冬令营和集训班需要少数数学家集集中时间出试题和进行培训工作外,宜鼓励广大数学家和中小学教师利用业余时间从事数学竞赛活动,不要妨碍大家的正常工作。总之,数学竞赛的普及部分与提高部分不要对立,而要有机地结合起来。

5.对数学竞赛优胜者要继续进行教育和培养。一方面要充分肯定优胜者的成绩并加以鼓励,另一方面也要告诉竞赛优胜者,必须戒骄戒躁,谦虚谨慎,要成为一个好数学家或其他方面的专家,还须经过长期不懈的锄。不要将竞赛获胜看成唯一的目的,要看成鼓励前进的鞭策。还要为数学竞赛优胜者创造较好的深入学习的机会,使他们能迅速成长。例如可以考虑允许某些理工科大学在高中全国数学竞赛优胜者中,自行选拔一部分学生免试入学。

6.对数学竞赛活动作出贡献的人员,包括组织领导者、教练与中小学教师的工作成绩要充分肯定并给予奖励。在他们的工作考核中,作为提职晋级的依据之一.

://.tbar.cn/news?act=newsContent&newsID=47